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In this work, the static inertial-elastic instability of rotating nano disks is investigated with
the centrifugal force formulation considering the radial displacement. Thus, Brunelle’s previ-
ous local solution is generalized by using Eringen’s nonlocal elasticity theory. The variations
of critical rotation speeds with the nonlocal scale parameter are illustrated under different
boundary conditions. It is seen that the critical rotation speeds decrease as the nonlocal
scale parameters increase for all cases. Also, it is remarkable that the presented results are
affected significantly from the boundary conditions.
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1. Introduction

The existence of static inertial-elastic instability in rotating disks has been noticed firstly by
Brunelle (1971). In his analysis, the centrifugal body force was taken to be including the radial
displacement; ρΩ2(r+ u) where ρ is mass density, Ω is rotational speed, r is initial undeformed
radius and u is radial displacement. He reported that this type of instability has primary im-
portance in rotating structures made of low modulus and high-yield strength materials. Hence,
in such cases, the centrifugal body force can be modified as Brunelle suggested, and this modi-
fied form of the centrifugal body force can be seen to be reasonable. By taking as the starting
point Brunelle’s suggestion in regard to the calculation of the centrifugal force, so far various
interesting papers with different purposes for rotating disks and cylinders have been published.
The effects of finite deformation upon a rotating orthotropic cylinder with linear elasticity were
investigated (Sandman, 1974). A new approach was presented (Güven, 1992) for the analysis
of transverse vibrations of rotating disks having equal strength. The effects of anisotropy on
the inertio-elastic instability of rotating disks and cylinders were investigated (Tutuncu, 2000;
Tutuncu and Ozturk, 2004) analytically. After a lot of years, Brunelle’s analytical results were
verified with ANSYS (Chianese, 2011). Recently, the inertio-elastic instability analysis of FGM
rotating disks of variable thickness fixed to a rigid shaft has been addressed in detail by using
complementary functions method (CFM) (Yildirim and Tutucu, 2018).
The recent developments in science and technology have enabled possibility of production

and use of various rotating structures in micro and nano scales. Recently, the static resonance of
rotating nanobars was investigated (Güven, 2018) based on Eringen’s nonlocal elasticity theory.
However, no analytical or numerical studies have been done up to date on the static inertio
elastic instability problem of rotating nano disks.
The present analysis tackles the inertial-elastic instability problem of rotating thin nano

disks. The analysis is based on Eringen’s nonlocal elasticity theory and Brunelle’s idea for
calculation of the centrifugal bod force which includes the radial displacement. In the analysis,
three different cases are investigated; a hollow rotating disk clamped at the inner edge and free
at the outer edge, and a hollow rotating disk free at the inner and outer edges and a rotating
solid disk free at the outer edge. The closed form analytical solutions and relationships between
the critical rotation speeds and size dependent nonlocal scale parameter are presented.
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2. Basic relations and closed form analytical solutions

In the present analysis, a thin homogeneous and isotropic rotating nano disk is considered. Also,
following Brunelle’s approach in regard to the centrifugal body force, the equation of motion in
terms of stresses can be expressed as

dσrr
dr
+
σrr − σθθ
r

+ ρΩ2(r + u) = 0 (2.1)

where σrr and σθθ are the radial and tangential stresses, respectively.
In this analysis framework, the strain components in terms of radial displacement u are

εrr =
du

dr
εθθ =

u

r
(2.2)

A basis non-local constitutive equation was derived as (Eringen, 1983)

σ − (eoa)
2
∇
2
σ = C : ε (2.3)

where e0a, σ, ε and C denote the size dependent small scale coefficient, the stress tensor, the
strain tensor and the fourth order elastic modulus tensor, respectively.
The all nonlocal constitutive formulations can be obtained from above Eq. (2.3). Thus, the

stress-radial displacement relations for the axial symmetric case in the cylindrical coordinate
considering Eqs. (2.2) and (2.3) can be derived as

σrr − (eoa)
2(∇2σ)rr =

E

1− ν2

(du

dr
+ ν
u

r

)

σθθ − (eoa)
2(∇2σ)θθ =

E

1− ν2

(u

r
+ ν
du

dr

)

(2.4)

where ν is the Poisson ratio, (∇2σ)rr and (∇
2
σ)θθ denote the radial and tangential components

of Laplacian of the stress tensor, respectively, in the cylindrical coordinates. These components
for the axial symmetric case are given as (Povstenko, 1995; Yu and Lim, 2013; Ghavanloo et al.,
2014; Tufekci and Aya, 2016)

(∇2σ)rr = ∇
2σrr −

2

r2
(σrr − σθθ)

(∇2σ)θθ = ∇
2σθθ +

2

r2
(σrr − σθθ)

(2.5)

where

∇
2σrr =

d2σrr
dr2
+
1

r

σrr
dr

∇
2σθθ =

d2σθθ
dr2
+
1

r

σθθ
dr

(2.6)

In the meantime, it should be mentioned that in some papers (e.g. Kiani, 2012a,b), constitutive
nonlocal Eqs. (2.4) have been wrongly expressed as follows

σrr − (eoa)
2
∇
2σrr = σ

local
rr

σθθ − (eoa)
2
∇
2σθθ = σ

local
θθ

(2.7)

Using Eqs. (2.4) and (2.5), the nonlocal differential equation of motion in terms of the stresses
and radial displacement is obtained as

dσrr
dr
+
σrr − σθθ
r

− (eoa)
2
[

∇
2
(dσrr
dr
+
σrr − σθθ
r

)

−
1

r2

(dσrr
dr
+
σrr − σθθ
r

)]

=
E

1− ν2

(d2u

dr2
+
1

r

du

dr
−
u

r2

)

(2.8)
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Having substituted Eq. (2.1) into Eq. (2.8), nonlocal differential equation (2.8) becomes as
follows

r2
d2u

dr2
+ r
du

dr
+
[

Ω
2
1

(r

b

)2
− 1
]

u = −Ω
2
1

r3

b2
(2.9)

where b is the outer radius and

Ω
2
1 =

Ω
2

1− (e0a)2Ω
2 Ω

2
=
(1− ν2)ρΩ2b2

E

Equation (2.9) is a familiar Bessel equation with the general solution (Watson,1966; McLachlan,
1961)

u

b
= AJ1

(

Ω1
r

b

)

+BY1
(

Ω1
r

b

)

−
r

b
(2.10)

where A and B are undetermined integration constants, J1 and Y1 are Bessel functions.
An alternative solution can be developed following a different way. For this, nonlocal consti-

tutive Eqs. (2.4) should be expressed in modified forms as follows

σrr − (eoa)
2l2σrr = σ

local
rr =

E

1− ν2

(du

dr
+ ν
u

r

)

σθθ − (eoa)
2l2σθθ = σ

local
θθ =

E

1− ν2

(u

r
+ ν
du

dr

)

(2.11)

where l2 is a differential operator and it is defined as l2 = (d2/dr2) + (1/r)(d/dr) − (1/r2).
Substituting Eqs. (2.11) into Eq. (2.1), one can recover directly Eq. (2.9).
The integration constants A and B are determined from the boundary conditions for three

different cases addressed in this analysis. Firstly, for the clamped-free hollow disk from the
related boundary conditions u(a) = σrr(b) = 0 by using Eqs. (2.10) and (2.11)1, these constants
are determined as

A =
1

Ccr

{

(1 + ν)Y1
(

Ω1
a

b

)

−
a

b
[Ω1J0(Ω1)− (1− ν)J1(Ω1)]

}

B =
1

Ccr

{a

b
[Ω1J0(Ω1)− (1− ν)J1(Ω1)]− (1 + ν)J1

(

Ω1
a

b

)}

(2.12)

where

Ccr = Y1
(

Ω1
a

b

)

[Ω1J0(Ω1)− (1− ν)J1(Ω1)]− J1
(

Ω1
a

b

)

[Ω1Y0(Ω1)− (1− ν)Y1(Ω1)] (2.13)

Secondly, for the free-free hollow disk, from the corresponding boundary conditions σrr(a) =
σrr(b) = 0 and by using Eq. (2.11)1, A and B are determined as

A = (1 + ν)
1

Ccr

{

[Ω1Y0(Ω1)− (1− ν)Y1(Ω1)]−
[

Ω1Y0
(

Ω1
a

b

)

−
b

a
(1− ν)Y1(Ω1)

a

b

]}

B = (1 + ν)
1

Ccr

{[

Ω1J0
(

Ω1
a

b

)

−
b

a
(1− ν)J1

(

Ω1
a

b

)]

− [Ω1J0(Ω1)− (1− ν)J1(Ω1)]
}

(2.14)

and

Ccr =
[

Ω1J0
(

Ω1
a

b

)

−
b

a
(1− ν)J1

(

Ω1
a

b

)]

[Ω1Y0(Ω1)− (1− ν)Y1(Ω1)]

− [Ω1J0(Ω1)− (1− ν)J1(Ω1)]
[

Ω1Y0
(

Ω1
a

b

)

−
b

a
(1− ν)Y1(Ω1)

a

b

]

(2.15)

Thirdly, for the solid disk, the integration constant B must be zero in order that the stresses
are finite at the centre. The second boundary condition σrr(b) = 0 gives

A =
1 + ν

Ccr
Ccr = Ω1J0(Ω1)− (1− ν)J1(Ω1) (2.16)
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3. Numerical results

In this Section, the effects of the size dependent small scale coefficient on the critical rotational
speeds that cause the inertial elastic instability are addressed for different boundary conditions,
i.e. clamped-free (C-F), free-free (F-F) hollow disks and the solid disk. The variations of di-
mensionless critical rotational speeds with the dimensionless nonlocal small scale coefficients are
shown in Figs. 1-3, for C-F, F-F and the solid disk. The dimensionless quantities in the numeri-
cal illustrations are defined to be: the dimensionless nonlocal small scale coefficient (e0a)/b, the
dimensionless rotational speed (1− v2)ρΩ2b2/E. The material properties like Poisson’s ratio ν,
Young’s modulus E and density ρ are taken to be 0.3, 70GPa and 2700 kg/m3, respectively.
The outer radius b is 1 nm, and the assessments should be done in nano scale. In generally,

Fig. 1. Variation of the critical rotational speed with the nonlocal scale coefficient for the hollow disk
under the clamped-free boundary condition

Fig. 2. Variation of the critical rotational speed with the nonlocal scale coefficient for the hollow disk
under the free-free boundary condition
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Fig. 3. Variation of the critical rotational speed with the nonlocal scale coefficient for the solid disk with
the free edge

Figs. 1-3 show that with an increase in the size dependent small scale coefficients, the critical
rotational speeds that lead to the inertial instability decrease. It is seen in a comparison betwe-
en Figs. 1 and 2 that the critical speeds are significantly affected by the boundary conditions.
This comparison shows that as the radii ratio increases, the critical rotation speeds increase,
contrary to the free-free boundary conditions. These increases are more significant, especially
in the low range of the scale coefficients. The critical rotation speeds under the clamped-free
boundary conditions are more significantly affected by the small scale coefficients compared with
the free-free boundary conditions. The inertial elastic instability occurs in smaller levels of the
critical rotation speeds under free-free boundary conditions. The critical rotation speeds become
insensitive versus the small scale coefficient as the radii ratio decreases under free-free boundary
conditions.

4. Conclusion

In this work, the inertial elastic instability of rotating nano disks under different boundary con-
ditions is investigated analytically. The analysis is based on the body force calculation including
the radial displacement suggested by Brunelle. Using Eringen’s nonlocal elasticity theory, the
previous local solution is generalized for the nonlocal elasticity. In addition, this work includes
other boundary conditions (i.e. free-free and solid disk) have not been reported in the previous
literature. The nonlocal inertial stability analysis is discussed for different boundary conditions
and radii ratios. The analysis provides useful insights for the rotating nano disks and shows that
threat of the inertial instability becomes more critical as the radii decrease.

Dedicated to memory of Prof. Dr. Udo Gamer (1937-2017) from TU Wien, which was a wonderful

man, an excellent researcher and academic teacher.
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